比赛链接
1001 Road To The 3rd Building
显然,
其中分子的化简如下:
枚举 $l$,预处理之后分段计算 $k$ 即可。
时间复杂度:$O(n)$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
| #include<bits/stdc++.h>
using namespace std;
template<typename T>void read(T&x){x=0;int fl=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-') fl=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}x*=fl;} template<typename T,typename...Args>inline void read(T&t,Args&...args){read(t);read(args...);}
typedef long long LL; typedef vector<int> vi; typedef pair<int, int> pii; #define mp(x, y) make_pair(x, y) #define pb(x) emplace_back(x)
const int N = 200005; const LL MOD = 1e9+7;
int n; LL a[N], sum[N], kak[N], inv[N];
int main(){ inv[1] = 1; for(int i = 2; i <= 200001; i++){ inv[i] = -(MOD / i) * inv[MOD % i]; ((inv[i] %= MOD) += MOD) %= MOD; } int T; for(read(T); T; T--){ read(n); for(int i = 1; i <= n; i++){ read(a[i]); sum[i] = (sum[i-1] + a[i]) % MOD; kak[i] = (kak[i-1] + i * a[i]) % MOD; } LL ans = 0; for(int l = 1; l <= n; l++){ LL res = 0; int k1 = min(l, n - l + 1), k2 = max(l, n - l + 1); (res += kak[k1]) %= MOD; if(l > n - l + 1) (res += (n - l + 1ll) * (sum[k2] - sum[k1]) % MOD) %= MOD; else if(l < n - l + 1) (res += l * (sum[k2] - sum[k1]) % MOD) %= MOD; (res += (n + 1ll) * (sum[n] - sum[k2]) % MOD - (kak[n] - kak[k2]) % MOD) %= MOD; ((res %= MOD) += MOD) %= MOD; (res *= inv[l]) %= MOD; (ans += res) %= MOD; } ans = ans * inv[n] % MOD * inv[n+1] % MOD * 2ll % MOD; printf("%lld\n", ans); } return 0; }
|
1002 Little Rabbit’s Equation
模拟。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
| #include<bits/stdc++.h>
using namespace std;
template<typename T>void read(T&x){x=0;int fl=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-') fl=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}x*=fl;} template<typename T,typename...Args>inline void read(T&t,Args&...args){read(t);read(args...);}
typedef long long LL; typedef vector<int> vi; typedef pair<int, int> pii; #define mp(x, y) make_pair(x, y) #define pb(x) emplace_back(x)
int n, f[1005]; char s[105];
inline bool check(LL bs){ for(int i = 1; i <= n; i++){ if(s[i] == '+' || s[i] == '-' || s[i] == '*' || s[i] == '/' || s[i] == '=') continue; if(f[s[i]] >= bs) return false; } LL a = 0, b = 0, c = 0; LL *t = &a; int kind = 0; for(int i = 1; i <= n; i++){ if(s[i] == '+'){ kind = 1; t = &b; continue; } else if(s[i] == '-'){ kind = 2; t = &b; continue; } else if(s[i] == '*'){ kind = 3; t = &b; continue; } else if(s[i] == '/'){ kind = 4; t = &b; continue; } else if(s[i] == '='){ t = &c; continue; } (*t) = (*t) * bs + f[s[i]]; } if(kind == 1) return a + b == c; else if(kind == 2) return a - b == c; else if(kind == 3) return a * b == c; else if(kind == 4) return a == b * c; return false; }
int main(){ for(int i = 0; i <= 9; i++) f[i+'0'] = i; for(int i = 'A'; i <= 'F'; i++) f[i] = i - 'A' + 10; while(scanf("%s", s+1) != EOF){ n = strlen(s+1); bool ok = false; for(int b = 2; b <= 16; b++){ if(check(b)){ ok = true; printf("%d\n", b); break; } } if(!ok) puts("-1"); } return 0; }
|
1005 Fragrant numbers
明天再写
1006 A Very Easy Graph Problem
由于边权都是 $2^i$ 且互不相同,依据题目输入顺序,两个点之间的最短路就是它们一旦连通的时候的路径。也就是说,根据加的边做生成树即可。
接下来就是一个 $\text{dp}$ 了,计算以 $i$ 为根的子树中黑白点的数量,据此计算每条边的贡献。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
| #include<bits/stdc++.h>
using namespace std;
template<typename T>void read(T&x){x=0;int fl=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-') fl=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}x*=fl;} template<typename T,typename...Args>inline void read(T&t,Args&...args){read(t);read(args...);}
typedef long long LL; typedef vector<int> vi; typedef pair<int, int> pii; #define mp(x, y) make_pair(x, y) #define pb(x) emplace_back(x)
const int N = 100005; const LL MOD = 1e9+7;
LL power[N<<1] = {1}; int n, m, a[N], sum[2]; vector<pii> edge[N];
int fa[N]; int findfa(int x){ return fa[x] == x ? x : fa[x] = findfa(fa[x]); } void unionn(int x, int y){ fa[findfa(y)] = findfa(x); }
int dp[N][2]; LL ans; void dfs(int x, int f){ dp[x][a[x]] = 1; for(auto &to : edge[x]){ if(to.first == f) continue; dfs(to.first, x); dp[x][0] += dp[to.first][0]; dp[x][1] += dp[to.first][1]; (ans += dp[to.first][0] * (sum[1] - dp[to.first][1]) % MOD * power[to.second] % MOD) %= MOD; (ans += dp[to.first][1] * (sum[0] - dp[to.first][0]) % MOD * power[to.second] % MOD) %= MOD; } }
inline void initCASES(){ sum[0] = sum[1] = ans = 0; for(int i = 1; i <= n; i++){ fa[i] = i; edge[i].clear(); dp[i][0] = dp[i][1] = 0; } }
int main(){ for(int i = 1; i <= 200000; i++) power[i] = power[i-1] * 2 % MOD; int T; for(read(T); T; T--){ read(n, m); initCASES(); for(int i = 1; i <= n; i++) read(a[i]), sum[a[i]]++; for(int i = 1; i <= m; i++){ int u, v; read(u, v); if(findfa(u) == findfa(v)) continue; unionn(u, v); edge[u].pb(mp(v, i)), edge[v].pb(mp(u, i)); } dfs(1, 0); printf("%lld\n", ans); } return 0; }
|
1007 A Very Easy Math Problem
推不动了,于是把 $\sum\limits_{d\mid T}d\mu^2(d)\mu\left(\frac{T}{d}\right)$ 这玩意儿单独拿出来,$O(nH(n))$预处理(可能可以线性筛预处理吧,但是没必要)。然后数论分块。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
| #include<bits/stdc++.h>
using namespace std;
template<typename T>void read(T&x){x=0;int fl=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-') fl=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}x*=fl;} template<typename T,typename...Args>inline void read(T&t,Args&...args){read(t);read(args...);}
typedef long long LL; typedef vector<int> vi; typedef pair<int, int> pii; #define mp(x, y) make_pair(x, y) #define pb(x) emplace_back(x)
const LL MOD = 1e9+7; const int N = 200005;
int mu[N], pList[N], pID; bool notP[N]; void Euler(int n){ notP[0] = notP[1] = 1; mu[1] = 1; for(int i = 1; i <= n; i++){ if(notP[i] == 0){ pList[++pID] = i; mu[i] = -1; } for(int j = 1; j <= pID; j++){ if(1ll * i * pList[j] > n) break; notP[i * pList[j]] = 1; if(i % pList[j] == 0){ mu[i * pList[j]] = 0; break; } else mu[i * pList[j]] = -mu[i]; } } }
inline LL fpow(LL bs, LL idx){ LL res = 1; bs %= MOD; while(idx){ if(idx & 1) (res *= bs) %= MOD; (bs *= bs) %= MOD; idx >>= 1; } return res; }
int T; LL k, x; LL f[N], S[N], inv, g[N];
int main(){ Euler(200000); read(T, k, x); for(int d = 1; d <= 200000; d++) for(int i = d; i <= 200000; i += d) (f[i] += d * mu[d] % MOD * mu[d] % MOD * mu[i / d] % MOD) %= MOD; for(int i = 1; i <= 200000; i++){ S[i] = (S[i-1] + fpow(i, k * x % (MOD-1)) * f[i] % MOD) % MOD; g[i] = (g[i-1] + fpow(i, k)) % MOD; } while(T--){ LL ans = 0; LL n; read(n); for(LL l = 1, r; l <= n; l = r + 1){ r = n / (n / l); ans += ((S[r] - S[l-1]) % MOD + MOD) * fpow(g[n/l], x) % MOD; ans %= MOD; } printf("%lld\n", ans); } return 0; }
|
1009 Divisibility
真是巧了,前几天才看了这个问题。
根据九余数定理的推广,一个 $b$ 进制数的各个数位相加与它本身模 $x$ 同余的充要条件是:$b\equiv1\pmod x$.
所以这道题只需要判断是否 $b\bmod x=1$ 即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
| #include<bits/stdc++.h>
using namespace std;
template<typename T>void read(T&x){x=0;int fl=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-') fl=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}x*=fl;} template<typename T,typename...Args>inline void read(T&t,Args&...args){read(t);read(args...);}
typedef long long LL; typedef vector<int> vi; typedef pair<int, int> pii; #define mp(x, y) make_pair(x, y) #define pb(x) emplace_back(x)
int T; LL b, x;
int main(){ for(read(T); T; T--){ read(b, x); if(b % x == 1) puts("T"); else puts("F"); } return 0; }
|
1010 Expectation
对每一位运用 $\textbf{Matrix-Tree Theorem}$ 计算这一位的生成树数量,这些数量按照二进制乘出来之后除以总的生成树数量即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
| #include<bits/stdc++.h>
using namespace std;
template<typename T>void read(T&x){x=0;int fl=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-') fl=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}x*=fl;} template<typename T,typename...Args>inline void read(T&t,Args&...args){read(t);read(args...);}
typedef long long LL; typedef vector<int> vi; typedef pair<int, int> pii; #define mp(x, y) make_pair(x, y) #define pb(x) emplace_back(x)
const int N = 105; const int M = 20005; const LL MOD = 998244353;
inline LL fpow(LL bs, LL idx){ bs %= MOD; LL res = 1; while(idx){ if(idx & 1) (res *= bs) %= MOD; (bs *= bs) %= MOD; idx >>= 1; } return res; }
namespace LA{ int n; LL a[N][N], b[N]; void init(int nn){ n = nn; for(int i = 1; i <= n; i++){ b[i] = 0; for(int j = 0; j <= n; j++) a[i][j] = 0; } } LL det(){ LL res = 1; int flag = 1; for(int j = 1; j <= n; j++){ int r = j; for(int i = j + 1; i <= n; i++) if(a[i][j] > a[j][j]) r = i; if(r != j) swap(a[r], a[j]), flag = -flag; if(a[j][j] == 0) return 0; for(int i = 1; i <= n; i++){ if(i == j) continue; LL div = a[i][j] * fpow(a[j][j], MOD-2) % MOD; for(int k = j; k <= n; k++){ a[i][k] -= div * a[j][k] % MOD; ((a[i][k] %= MOD) += MOD) %= MOD; } } } for(int i = 1; i <= n; i++) (res *= a[i][i]) %= MOD; return flag > 0 ? res : MOD - res; } }
int T, n, m; LL u[M], v[M], w[M];
inline LL solve(int b){ LA::init(n-1); for(int i = 0; i <= n; i++) for(int j = 0; j <= n; j++) LA::a[i][j] = 0; for(int i = 1; i <= m; i++){ if(b == -1 || ((w[i] >> b) & 1)){ LA::a[u[i]][v[i]]--, LA::a[v[i]][u[i]]--; LA::a[u[i]][u[i]]++, LA::a[v[i]][v[i]]++; } } for(int i = 1; i < n; i++) for(int j = 1; j < n; j++) ((LA::a[i][j] %= MOD) += MOD) %= MOD; return LA::det(); }
int main(){ for(read(T); T; T--){ read(n, m); for(int i = 1; i <= m; i++) read(u[i], v[i], w[i]); LL ans = 0; for(int b = 31; b >= 0; b--) ans = (ans * 2 + solve(b)) % MOD; LL tot = solve(-1); printf("%lld\n", ans * fpow(tot, MOD-2) % MOD); } return 0; }
|