[AtCoder ARC098]E - Range Minimum Queries
E - Range Minimum Queries
Time limit : 2sec / Memory limit : 1024MB
Score : 600 points
Problem Statement
You are given an integer sequence $A$ of length $N$ and an integer $K$. You will perform the following operation on this sequence $Q$ times:
- Choose a contiguous subsequence of length $K$, then remove the smallest element among the $K$ elements contained in the chosen subsequence (if there are multiple such elements, choose one of them as you like).
Let $X$ and $Y$ be the values of the largest and smallest element removed in the $Q$ operations. You would like $X−Y$ to be as small as possible. Find the smallest possible value of $X−Y$ when the $Q$ operations are performed optimally.
Constraints
$1≤N≤2000$
$1≤K≤N$
$1≤Q≤N−K+1$
$1≤A_i≤10^9$
All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $K$ $Q$
$A_1$ $A_2$ … $A_N$
Output
Print the smallest possible value of $X−Y$.
Samples
Input | Output |
---|---|
5 3 2 4 3 1 5 2 |
1 |
10 1 6 1 1 2 3 5 8 13 21 34 55 |
7 |
11 7 5 24979445 861648772 623690081 433933447 476190629 262703497 211047202 971407775 628894325 731963982 822804784 |
451211184 |
In the first operation, whichever contiguous subsequence of length 3 we choose, the minimum element in it is $1$. Thus, the first operation removes $A_3=1$ and now we have $A=(4,3,5,2)$. In the second operation, it is optimal to choose $(A_2,A_3,A_4)=(3,5,2)$ as the contiguous subsequence of length $3$ and remove $A_4=2$. In this case, the largest element removed is $2$, and the smallest is $1$, so their difference is $2−1=1$.
解题思路
如果从正面来想,最大值 $X$ 和最小值 $Y$ 都在变,所以不好解决。
于是我们可以固定最小值 $Y$,每次找符合要求的最小的 $X$ 就行了。
具体来说,从小到大枚举最小值 $Y$,对于每次枚举的 $Y$:我们可以找到一些区间,满足区间长度 $len$ 大于等于 $K$ 并且区间内的所有数都大于等于 $Y$,于是这个区间内的前 $len - K + 1$ 小都有可能被选进答案,记录下这些可能值后,排序就可以找到对于当前的 $Y$ 最小的 $X$ 是多少,用 $X-Y$ 更新 $ans$ 即可。
时间复杂度:枚举是 $O(N)$ 的,每次枚举中查找可能值+排序是 $O(N+N\log N)$的,所以总复杂度是 $O(N^2\log N)$
Code
1 |
|